1,861 research outputs found

    Universal reshaping of arrested colloidal gels via active doping

    Get PDF
    Colloids that interact via a short-range attraction serve as the primary building blocks for a broad range of self-assembled materials. However, one of the well-known drawbacks to this strategy is that these building blocks rapidly and readily condense into a metastable colloidal gel. Using computer simulations, we illustrate how the addition of a small fraction of purely repulsive self-propelled colloids, a technique referred to as active doping, can prevent the formation of this metastable gel state and drive the system toward its thermodynamically favored crystalline target structure. The simplicity and robust nature of this strategy offers a systematic and generic pathway to improving the self-assembly of a large number of complex colloidal structures. We discuss in detail the process by which this feat is accomplished and provide quantitative metrics for exploiting it to modulate self-assembly. We provide evidence for the generic nature of this approach by demonstrating that it remains robust under a number of different anisotropic short-ranged pair interactions in both two and three dimensions. In addition, we report on a novel microphase in mixtures of passive and active colloids. For a broad range of self-propelling velocities, it is possible to stabilize a suspension of fairly monodisperse finite-size crystallites. Surprisingly, this microphase is also insensitive to the underlying pair interaction between building blocks. The active stabilization of these moderately-sized monodisperse clusters is quite remarkable and should be of great utility in the design of hierarchical self-assembly strategies. This work further bolsters the notion that active forces can play a pivotal role in directing colloidal self-assembly.Comment: Supplemental Material available here: https://aip.scitation.org/doi/suppl/10.1063/5.001651

    Universal reshaping of arrested colloidal gels via active doping

    Get PDF
    Colloids that interact via a short-range attraction serve as the primary building blocks for a broad range of self-assembled materials. However, one of the well-known drawbacks to this strategy is that these building blocks rapidly and readily condense into a metastable colloidal gel. Using computer simulations, we illustrate how the addition of a small fraction of purely repulsive self-propelled colloids, a technique referred to as active doping, can prevent the formation of this metastable gel state and drive the system toward its thermodynamically favored crystalline target structure. The simplicity and robust nature of this strategy offers a systematic and generic pathway to improving the self-assembly of a large number of complex colloidal structures. We discuss in detail the process by which this feat is accomplished and provide quantitative metrics for exploiting it to modulate the self-assembly. We provide evidence for the generic nature of this approach by demonstrating that it remains robust under a number of different anisotropic short-ranged pair interactions in both two and three dimensions. In addition, we report on a novel microphase in mixtures of passive and active colloids. For a broad range of self-propelling velocities, it is possible to stabilize a suspension of fairly monodisperse finite-size crystallites. Surprisingly, this microphase is also insensitive to the underlying pair interaction between building blocks. The active stabilization of these moderately sized monodisperse clusters is quite remarkable and should be of great utility in the design of hierarchical self-assembly strategies. This work further bolsters the notion that active forces can play a pivotal role in directing colloidal self-assembly

    Effects of Pituitary Stalk-transection and Type of Barrier on Pituitary and Luteal Function During the Estrous Cycle of the Ewe

    Get PDF
    Effects of pituitary stalk-transection on plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) prolactin (PRL) and progesterone were investigated during the estrous cycle of ewes. Pituitary stalk (SS) or sham (SH) transection was performed on day 1 (estrus = day 0) of the estrous cycle. A Teflon or Silastic barrier was placed between the cut ends of the stalk to prevent reorganization of the portal vasculature. Immediately following surgery, pulsatile administration of gonadotropin releasing hormone (GnRH, 200 ng/hr) or .9% NaCl was initiated and continued for the duration of the experiment. Estradiol benzoate (EB, 50 μg im) was administered to all ewes on day 3. Mean concentrations of LH were greater in SS ewes than in SH ewes (P\u3c.05). There was a trend (P=.06) for the concentration of LH to be higher in ewes with Teflon compared with Silastic barriers between the cut ends of the stalk. Infusion of GnRH elevated concentrations of LH in both SS and SH ewes (P\u3c.05). Concentrations of progesterone were reduced (P\u3c.01) in saline-infused SS ewes while infusion of GnRH in SS ewes maintained concentrations of progesterone similar to saline-infused SH ewes. The concentrations of FSH or PRL were unaffected by SS, type of barrier or treatment with GnRH. Administration of EB failed to induce a surge of LH except in a SH ewe infused with GnRH. Ewes were more responsive to infusion of GnRH following SS than after SH as reflected by increased plasma concentrations of LH and progesterone

    Gonadotropin Concentrations, Follicular Development, and Luteal Function in Pituitary Stalk-transfected Ewes Treated with Bovine Follicular Fluid

    Get PDF
    Two experiments, each arranged as a 2 x 2 factorial, were conducted in ewes to examine direct effects of bovine follicular fluid (bFF) on follicular development and luteal function and to further characterize follicular development and luteal function after pituitary stalk transection (SS). In Exp. 1, ewes were sham-operated or SS on d 6 of an estrous cycle and received 5 ml of saline or bFF three times daily on d 5 through 11 of the same cycle. In Exp. 2, all ewes were SS on d 6 of an estrous cycle and treated with saline or bFF three times daily on d 5 through 11 and with ovine FSH (60 micrograms; NIADDK-oFSH-16) or saline (1.2 ml) from d 7 to 11. In Exp. 2, ewes were ovariectomized on d 11 to assess effects of treatments on follicular development and luteal function. In both experiments, concentrations (ng/ml) of FSH on d 7 were suppressed (P less than or equal to .005) by bFF compared with saline (.50 +/- .17 vs 1.63 +/- .15) and remained suppressed (P less than or equal to .005) through d 11 (.46 +/- .12 vs 1.54 +/- .12). Replacement therapy (oFSH) restored concentrations of FSH. Concentrations of LH were not affected by bFF but were elevated (P less than or equal to .05) 1 d after SS (d 7; .88 +/- .09 vs .56 +/- .09) and remained elevated (P less than or equal to .05; 1.31 +/- .20 vs .65 +/- .11) from d 6 through 11. Concentrations of progesterone were unaffected by SS
    • …
    corecore